Friday 24 November 2017

Primer Orden Media Móvil Modelo


Mover modelos de promedio y suavizado exponencial Como primer paso para avanzar más allá de los modelos de medias, modelos de paseo aleatorio, y los modelos lineales de tendencia, patrones y tendencias no estacionales se puede extrapolar el uso de un modelo de media móvil o alisado. El supuesto básico detrás de promediado y modelos de suavizado es que la serie de tiempo es estacionaria localmente con una media de variación lenta. Por lo tanto, tomamos una media móvil (local) para estimar el valor actual de la media y luego usar eso como el pronóstico para el futuro próximo. Esto puede ser considerado como un compromiso entre el modelo de la media y la deriva en el modelo del paseo aleatorio, sin. La misma estrategia se puede utilizar para estimar y extrapolar una tendencia local. Un promedio móvil a menudo se llama una versión quotsmoothedquot de la serie original porque los promedios de corto plazo tiene el efecto de suavizar los baches en la serie original. Al ajustar el grado de suavizado (el ancho de la media móvil), que podemos esperar para golpear algún tipo de equilibrio óptimo entre el rendimiento de los modelos de medias y caminar al azar. El tipo más simple de promedio de modelos es el. Sencilla (igualmente ponderados) Media Móvil: El pronóstico para el valor de Y en el tiempo t1 que se hace en el tiempo t es igual a la media aritmética de las observaciones más recientes M: (Aquí y en otros lugares que va a utilizar el símbolo 8220Y-hat8221 reposar para obtener la previsión de las series temporales Y hecha en la fecha previa temprano posible de un modelo dado.) Este promedio se centra en el periodo t (m1) / 2, lo que implica que la estimación de la media local tenderá a la zaga del verdadero valor de la media local por cerca de (m1) / 2 períodos. Por lo tanto, decimos que la edad promedio de los datos de la media móvil simple (m1) / 2 con respecto al período para el que se calcula el pronóstico: esta es la cantidad de tiempo en que las previsiones tienden a la zaga de los puntos de inflexión en el datos. Por ejemplo, si son un promedio de los últimos 5 valores, las previsiones será de unos 3 periodos tarde en la respuesta a los puntos de inflexión. Tenga en cuenta que si m1, el modelo de media móvil simple (SMA) es equivalente al modelo de paseo aleatorio (sin crecimiento). Si m es muy grande (comparable a la longitud del período de estimación), el modelo de SMA es equivalente al modelo de la media. Como con cualquier parámetro de un modelo de predicción, es costumbre para ajustar el valor de k con el fin de obtener el mejor quotfitquot a los datos, es decir, los errores de pronóstico más pequeños en promedio. Aquí está un ejemplo de una serie que parece mostrar fluctuaciones aleatorias alrededor de una media que varía lentamente. En primer lugar, permite tratar de encajar con un modelo de paseo aleatorio, lo que equivale a una media móvil simple de 1 plazo: El modelo de paseo aleatorio responde muy rápidamente a los cambios en la serie, pero al hacerlo se recoge gran parte de la quotnoisequot en el datos (las fluctuaciones aleatorias), así como la quotsignalquot (la media local). Si en lugar de probar una media móvil simple de 5 términos, obtenemos una puesta a punto más suave en busca de los pronósticos: El 5 plazo promedio móvil simple rendimientos significativamente más pequeños que los errores del modelo de paseo aleatorio en este caso. La edad promedio de los datos de esta previsión es de 3 ((51) / 2), de modo que tiende a la zaga de los puntos de inflexión en aproximadamente tres períodos. (Por ejemplo, una recesión parece haber ocurrido en el período de 21 años, pero las previsiones no dar la vuelta hasta varios períodos más tarde.) Tenga en cuenta que las previsiones a largo plazo del modelo de SMA son una línea recta horizontal, al igual que en el paseo aleatorio modelo. Por lo tanto, el modelo de SMA asume que no hay una tendencia en los datos. Sin embargo, mientras que las previsiones del modelo de paseo aleatorio son simplemente igual al último valor observado, las predicciones del modelo de SMA son iguales a una media ponderada de los valores recientes. Los límites de confianza calculados por Statgraphics para las previsiones a largo plazo de la media móvil simple no se ensanchan a medida que aumenta la previsión horizonte. Esto obviamente no es correcta Desafortunadamente, no existe una teoría estadística subyacente que nos dice cómo los intervalos de confianza debe ampliar para este modelo. Sin embargo, no es demasiado difícil de calcular estimaciones empíricas de los límites de confianza para los pronósticos a más largo horizonte. Por ejemplo, podría configurar una hoja de cálculo en la que el modelo de SMA sería utilizado para pronosticar 2 pasos por delante, 3 pasos por delante, etc., dentro de la muestra de datos históricos. A continuación, podría calcular las desviaciones estándar de la muestra de los errores en cada horizonte de pronóstico, y luego construir intervalos de confianza para los pronósticos a más largo plazo sumando y restando múltiplos de la desviación estándar correspondiente. Si tratamos una media móvil simple de 9 plazo, obtenemos previsiones aún más suaves y más de un efecto rezagado: La edad media es ahora de 5 puntos ((91) / 2). Si tomamos una media móvil de 19 plazo, el promedio de edad aumenta a 10: Tenga en cuenta que, de hecho, las previsiones están quedando atrás los puntos de inflexión en alrededor de 10 periodos. ¿Qué cantidad de suavizado que es mejor para esta serie Aquí se presenta una tabla que compara sus estadísticas de errores, incluyendo también una 3-plazo promedio: Modelo C, la media móvil de 5 plazo, se obtiene el valor más bajo de RMSE por un pequeño margen sobre el 3 - term y 9 plazo promedios, y sus otras estadísticas son casi idénticos. Así, entre los modelos con las estadísticas de errores muy similares, podemos elegir si preferimos un poco más la capacidad de respuesta o un poco más de suavidad en los pronósticos. (Volver al comienzo de la página.) Browns suavizado exponencial simple (promedio móvil ponderado exponencialmente) El modelo de media móvil simple descrito anteriormente tiene la propiedad indeseable que trata los últimos k observaciones por igual y completamente ignora todas las observaciones precedentes. Intuitivamente, los datos del pasado deben ser descontados de forma más gradual - por ejemplo, la observación más reciente debería ser un poco más de peso que 2 más reciente, y el segundo más reciente debería ser un poco más peso que la 3 más reciente, y pronto. El modelo de suavizamiento exponencial simple (SES) logra esto. Vamos a 945 denotan un constantquot quotsmoothing (un número entre 0 y 1). Una forma de escribir el modelo es definir una serie L que representa el nivel actual (es decir, valor medio local) de la serie como se estima a partir de datos hasta el presente. El valor de L en el tiempo t se calcula de forma recursiva a partir de su propio valor anterior así: Por lo tanto, el valor suavizado actual es una interpolación entre el valor suavizado anterior y la observación actual, donde los 945 controles de la proximidad entre el valor interpolado a la más reciente observación. La previsión para el próximo período es simplemente el valor suavizado actual: De manera equivalente, podemos expresar el pronóstico siguiente directamente en función de las previsiones anteriores y observaciones anteriores, en cualquiera de las siguientes versiones equivalentes. En la primera versión, la previsión es una interpolación entre pronóstico anterior y observación anterior: En la segunda versión, el siguiente pronóstico se obtiene mediante el ajuste de la previsión anterior en la dirección del error anterior por una cantidad fraccionaria 945. está el error cometido en el tiempo t. En la tercera versión, el pronóstico es un ponderado exponencialmente (es decir, descontado) de media móvil con el factor de descuento 1- 945: La versión de interpolación de la fórmula de predicción es el más simple de usar si está implementando el modelo en una hoja de cálculo: se ajusta en una sola célula y contiene referencias a celdas que apuntan a la previsión anterior, la observación anterior, y la célula donde se almacena el valor de 945. Tenga en cuenta que si 945 1, el modelo SES es equivalente a un modelo de paseo aleatorio (sin crecimiento). Si 945 0, el modelo SES es equivalente al modelo de la media, suponiendo que el primer valor de suavizado se establece igual a la media. (Volver al comienzo de la página.) La edad promedio de los datos en el pronóstico a simple alisado exponencial es 1/945 con respecto al período para el que se calcula el pronóstico. (Esto no se supone que es obvio, pero se puede demostrar fácilmente mediante la evaluación de una serie infinita.) Por lo tanto, el simple previsión de media móvil tiende a la zaga de los puntos de inflexión en alrededor de 1/945 períodos. Por ejemplo, cuando 945 0.5 el retraso es de 2 945 periodos en los que el retraso es 0,2 5 0,1 945 periodos en los que el retraso es de 10 períodos, y así sucesivamente. Para una edad media determinada (es decir, cantidad de lag), el suavizamiento exponencial simple (SES) Pronóstico es algo superior a la previsión media móvil simple (SMA) porque pone relativamente más peso en la más reciente --i. e observación. es ligeramente más quotresponsivequot a los cambios que ocurren en el pasado reciente. Por ejemplo, un modelo de SMA con 9 términos y un modelo de SES con 945 0.2 ambos tienen una edad promedio de 5 para los datos en sus previsiones, pero el modelo SES pone más peso en los últimos 3 valores que lo hace el modelo de SMA y en el mismo tiempo doesn8217t totalmente 8220forget8221 sobre los valores de más de 9 períodos de edad, como se muestra en esta tabla: Otra ventaja importante del modelo SES sobre el modelo SMA es que el modelo SES utiliza un parámetro de suavizado que es continuamente variable, por lo que puede fácilmente optimizada mediante el uso de un algoritmo de quotsolverquot para minimizar el error cuadrático medio. El valor óptimo de 945 en el modelo SES para esta serie resulta ser 0.2961, como se muestra aquí: La edad promedio de los datos de esta previsión es de 1 / 0,2961 3,4 periodos, que es similar a la de un móvil simple 6 plazo promedio. Las previsiones a largo plazo del modelo de SES son una línea recta horizontal. como en el modelo de SMA y el modelo de paseo aleatorio sin crecimiento. Sin embargo, tenga en cuenta que los intervalos de confianza calculados por Statgraphics ahora divergen de un modo de aspecto razonable, y que son sustancialmente más estrecha que los intervalos de confianza para el modelo de paseo aleatorio. El modelo SES asume que la serie es un poco predictablequot quotmore que lo hace el modelo de paseo aleatorio. Un modelo SES es en realidad un caso especial de un modelo ARIMA. por lo que la teoría estadística de los modelos ARIMA proporciona una buena base para el cálculo de los intervalos de confianza para el modelo SES. En particular, un modelo SES es un modelo ARIMA con una diferencia no estacional, un MA (1) plazo, y sin término constante. también conocido como un modelo quotARIMA (0,1,1) sin constantquot. El MA (1) coeficiente en el modelo ARIMA corresponde a la cantidad 1- 945 en el modelo de SES. Por ejemplo, si encaja en un modelo ARIMA (0,1,1) sin el temor constante a la serie analizada aquí, el MA estimado (1) coeficiente resulta ser 0.7029, que es casi exactamente uno menos 0,2961. Es posible añadir el supuesto de un no-cero tendencia constante lineal a un modelo de SES. Para ello, sólo tiene que especificar un modelo ARIMA con una diferencia no estacional y un (1) término MA con una constante, es decir, un modelo ARIMA (0,1,1) con constante. Las previsiones a largo plazo tendrán entonces una tendencia que es igual a la tendencia promedio observado durante todo el período de estimación. No se puede hacer esto en conjunto con ajuste estacional, ya que las opciones de ajuste estacional se desactivan cuando el tipo de modelo se establece en ARIMA. Sin embargo, se puede añadir una tendencia exponencial constante a largo plazo a un simple modelo de suavizado exponencial (con o sin ajuste estacional) mediante el uso de la opción de ajuste de la inflación en el procedimiento de pronóstico. La tasa de quotinflationquot apropiado (porcentaje de crecimiento) por período se puede calcular como el coeficiente de la pendiente en un modelo de tendencia lineal ajustada a los datos en conjunción con una transformación logaritmo natural, o puede basarse en otra información, independiente sobre las perspectivas de crecimiento a largo plazo . (Volver a la parte superior de la página.) Browns lineales (es decir, dobles) modelos de suavizado exponencial de la media móvil y modelos SES asumen que no hay una tendencia de cualquier tipo en los datos (que es por lo general OK o al menos no muy malo para 1- previsiones paso por delante cuando los datos son relativamente ruidoso), y que pueden ser modificados para incorporar una tendencia lineal constante como se muestra arriba. ¿Qué hay de tendencias a corto plazo Si una serie muestra una tasa variable de crecimiento o un patrón cíclico que se destaca claramente contra el ruido, y si hay una necesidad de pronosticar más de 1 periodo por delante, a continuación, la estimación de una tendencia local también puede ser un problema. El modelo simple de suavizado exponencial se puede generalizar para obtener un modelo lineal de suavizado exponencial (LES) que calcula las estimaciones locales de tanto nivel y la tendencia. El modelo de tendencia variable en el tiempo más simple es Browns lineales exponencial modelo de suavizado, que utiliza dos series diferentes alisado que se centran en diferentes puntos en el tiempo. La fórmula de predicción se basa en una extrapolación de una línea a través de los dos centros. (Una versión más sofisticada de este modelo, Holt8217s, se discute a continuación.) La forma algebraica de Brown8217s lineal modelo de suavizado exponencial, al igual que la del modelo simple de suavizado exponencial, se puede expresar en un número de formas diferentes pero equivalentes. La forma quotstandardquot de este modelo se suele expresar como sigue: Sea S la serie suavizada por enlaces sencillos, obtenido mediante la aplicación de suavizado exponencial simple de la serie Y. Es decir, el valor de S en el período t viene dada por: (Hay que recordar que, en virtud de simples suavizado exponencial, esto sería el pronóstico para Y en el periodo t1), entonces Squot denotan la serie suavizada doblemente obtenido mediante la aplicación de suavizado exponencial simple (utilizando la misma 945) de la serie S:. por último, el pronóstico para tk Y. para cualquier kgt1, viene dada por: Esto produce e 1 0 (es decir, engañar un poco, y dejar que el primer pronóstico es igual a la primera observación real), y e 2 Y2 Y1 8211. después de lo cual las previsiones se generan utilizando la ecuación anterior. Esto produce los mismos valores ajustados según la fórmula basada en S y S si éstas se puso en marcha el uso de S 1 S 1 Y 1. Esta versión del modelo se utiliza en la siguiente página que ilustra una combinación de suavizado exponencial con ajuste estacional. modelo Holt8217s lineal de suavizado exponencial Brown8217s LES calcula estimaciones locales de nivel y la tendencia al suavizar los datos recientes, pero el hecho de que lo hace con un único parámetro de suavizado un factor limitante para los patrones de datos que es capaz de encajar: el nivel y la tendencia no se les permite variar a frecuencias independientes. modelo Holt8217s LES resuelve este problema mediante la inclusión de dos constantes de suavizado, una para el nivel y uno para la tendencia. En cualquier momento t, como en el modelo Brown8217s, el no es una estimación L t del nivel local y una estimación T t de la tendencia local. Aquí se computan de forma recursiva a partir del valor de Y observó en el tiempo t, y las estimaciones anteriores del nivel y la tendencia por dos ecuaciones que se aplican suavizado exponencial a ellos por separado. Si el nivel estimado y la tendencia en el tiempo t-1 son L y T t82091 t-1. respectivamente, entonces el pronóstico para Y tshy que se habrían hecho en el momento t-1 es igual a L-1 t t t-1. Cuando se observa el valor real, la estimación actualizada del nivel se calcula de forma recursiva mediante la interpolación entre Y tshy y su pronóstico, L-1 t t t-1, usando pesos de 945 y 945. 1- El cambio en el nivel estimado, es decir, L t L 8209 t82091. puede interpretarse como una medición de ruido de la tendencia en el tiempo t. La estimación actualizada de la tendencia se calcula entonces de forma recursiva mediante la interpolación entre L T 8209 L t82091 y la estimación anterior de la tendencia, T t-1. usando pesos de 946 y 1-946: La interpretación de la tendencia constante de alisamiento 946 es análoga a la de los de nivel constante de alisamiento 945. Los modelos con valores pequeños de 946 asume que la tendencia cambia sólo muy lentamente con el tiempo, mientras que los modelos con 946 más grande asumen que está cambiando más rápidamente. Un modelo con un gran 946 cree que el futuro lejano es muy incierto, ya que los errores en la estimación de la tendencia-llegar a ser bastante importante cuando la previsión de más de un período que se avecina. (Volver al principio de la página.) El suavizado constantes de 945 y 946 se puede estimar de la forma habitual mediante la minimización del error cuadrático medio de las previsiones 1-paso-a continuación. Cuando esto se haga en Statgraphics, las estimaciones resultan ser 945 0,3048 y 946 0.008. El valor muy pequeño de 946 significa que el modelo supone muy poco cambio en la tendencia de un período a otro, por lo que, básicamente, este modelo está tratando de estimar una tendencia a largo plazo. Por analogía con la noción de que la edad promedio de los datos que se utiliza para estimar el nivel local de la serie, la edad media de los datos que se utiliza para estimar la tendencia local es proporcional a 1/946, aunque no exactamente igual a eso. En este caso que resulta ser 1 / 0.006 125. Esta isn8217t un número muy preciso ya que la precisión de la estimación de 946 isn8217t realmente 3 cifras decimales, pero es del mismo orden general de magnitud que el tamaño de muestra de 100 , por lo que este modelo tiene un promedio de más de un buen montón de historia para estimar la tendencia. La trama de previsión a continuación muestra que el modelo de LES estima una tendencia local de un poco más grande en el extremo de la serie de la tendencia constante estimado en el modelo SEStrend. Además, el valor estimado de 945 es casi idéntica a la obtenida ajustando el modelo SES con o sin tendencia, por lo que este es casi el mismo modelo. Ahora, hacen éstos se parecen a las previsiones razonables para un modelo que se supone que es la estimación de la tendencia local Si 8220eyeball8221 esta trama, parece que la tendencia local se ha convertido a la baja al final de la serie Lo que ha sucedido Los parámetros de este modelo se han estimado mediante la minimización del error al cuadrado de las previsiones de 1-paso adelante, no pronósticos a más largo plazo, en cuyo caso la tendencia doesn8217t hacen una gran diferencia. Si todo lo que está viendo son los errores 1-paso-a continuación, usted no está viendo el panorama general de las tendencias en (digamos) 10 o 20 períodos. Con el fin de conseguir este modelo más acorde con nuestra extrapolación de los datos de globo ocular, podemos ajustar manualmente la tendencia constante de alisamiento para que utilice una línea de base más corta para la estimación de tendencia. Por ejemplo, si elegimos para establecer 946 0.1, a continuación, la edad media de los datos utilizados en la estimación de la tendencia local es de 10 períodos, lo que significa que estamos promediando la tendencia de que los últimos 20 períodos más o menos. Here8217s lo que la trama de previsión parece si ponemos 946 0,1 945 0,3 mientras se mantiene. Esto parece intuitivamente razonable para esta serie, aunque es probable que sea peligroso extrapolar esta tendencia alguna más de 10 periodos en el futuro. ¿Qué pasa con las estadísticas de error Aquí está una comparación de modelos para los dos modelos que se muestran arriba, así como tres modelos SES. El valor óptimo de 945.para el modelo SES es de aproximadamente 0,3, pero resultados similares (con poco más o menos capacidad de respuesta, respectivamente) se obtienen con 0,5 y 0,2. exp lineal (A) Holt. suavizado con alfa y beta 0,3048 0,008 (B) Holts exp lineal. suavizado con alfa 0,3 y beta 0.1 (C) de suavizado exponencial simple con alfa 0,5 (D) de suavizado exponencial simple con alfa 0,3 (E) de suavizado exponencial simple con alfa 0,2 Sus estadísticas son casi idénticos, por lo que realmente can8217t tomar la decisión sobre la base de los errores de pronóstico 1 paso por delante dentro de la muestra de datos. Tenemos que recurrir a otras consideraciones. Si estamos convencidos de que tiene sentido basar la estimación actual tendencia en lo que ha ocurrido en los últimos 20 períodos más o menos, podemos hacer un caso para el modelo con LES y 945 0,3 946 0,1. Si queremos ser agnóstico sobre si existe una tendencia local, entonces uno de los modelos SLS podría ser más fácil de explicar y también daría más pronósticos media-of-the-road para los próximos 5 o 10 períodos. (Volver al principio de la página.) ¿Qué tipo de tendencia-extrapolación es mejor: La evidencia empírica horizontal o lineal sugiere que, si ya se han ajustado los datos (si es necesario) para la inflación, entonces puede ser imprudente extrapolar lineal a corto plazo tendencias muy lejos en el futuro. Tendencias hoy evidentes podrían crecer más en el futuro debido a causas variadas como la obsolescencia de los productos, el aumento de la competencia, y las depresiones cíclicas o repuntes en una industria. Por esta razón, suavizamiento exponencial simple menudo funciona mejor fuera de la muestra de lo que se podría esperar de otro modo, a pesar de su quotnaivequot horizontal extrapolación de tendencias. Amortiguadas modificaciones tendencia del modelo de suavizado exponencial lineal también se utilizan a menudo en la práctica de introducir una nota de cautela en sus proyecciones de tendencias. El modelo LES-tendencia amortiguada puede ser implementado como un caso especial de un modelo ARIMA, en particular, una (1,1,2) modelo ARIMA. Es posible calcular intervalos de confianza alrededor de las predicciones a largo plazo producidos por los modelos de suavizado exponencial, al considerarlos como casos especiales de los modelos ARIMA. (Cuidado: no todo el software calcula correctamente los intervalos de confianza para estos modelos.) La anchura de los intervalos de confianza depende de (i) el error RMS del modelo, (ii) el tipo de suavizado (simple o lineal) (iii) el valor (s) de la constante (s) de suavizado y (iv) el número de períodos por delante que se pronostica. En general, los intervalos se extienden más rápido a medida 945 se hace más grande en el modelo SES y se extienden mucho más rápido cuando se utiliza en lugar de lineal de suavizado simple. En este tema se tratará más adelante en la sección de modelos ARIMA de las notas. (Volver a la parte superior de la página.) Los procesos de error de promedios móviles autorregresivos (errores ARMA) y otros modelos que implican retrasos de términos de error se pueden estimar mediante el uso de declaraciones FIT y simuladas o pronostican utilizando SOLVE declaraciones. modelos ARMA para el proceso de error se utilizan a menudo para los modelos con los residuos de autocorrelación. La macro AR se puede utilizar para especificar los modelos con los procesos de error autorregresivos. La macro MA se puede utilizar para especificar los modelos con los procesos de error de movimiento de la media. Los errores autorregresivos Un modelo con errores autorregresivos de primer orden, AR (1), tiene la forma, mientras que un AR (2) Proceso de error tiene la forma y así sucesivamente para los procesos de orden superior. Tenga en cuenta que los s son independientes e idénticamente distribuidos y tienen un valor esperado de 0. Un ejemplo de un modelo con un AR (2) componente es y así sucesivamente para los procesos de orden superior. Por ejemplo, puede escribir un modelo de regresión lineal simple con MA (2) errores como cuando MA1 y MA2 son los parámetros de movimiento de la media-media móvil. Tenga en cuenta que RESID. Y se define automáticamente por MODELO PROC como ZLAG La función debe ser utilizado para los modelos MA para truncar la recursividad de los GAL. Esto asegura que los errores retardados comienzan en cero en la fase de latencia de aspiración normal y no se propagan los valores perdidos cuando las variables período de demora de cebado están desaparecidos, y asegura que los futuros errores son cero en lugar de desaparecidos durante la simulación o predicción. Para obtener detalles sobre las funciones de retardo, consulte la sección Lógica Lag. Este modelo escrito usando la macro MA es el siguiente: Formulario General de modelos ARMA El proceso general ARMA (p, q) tiene la siguiente forma Un ARMA (p, q) se puede especificar de la siguiente manera: donde AR I y MA j representan los parámetros autorregresivos y moviéndose a la media para los distintos grupos de acción local. Se puede utilizar cualquier nombre que desee para estas variables, y hay muchas formas equivalentes que la especificación se podría escribir. Vector procesos ARMA también pueden ser estimadas con el modelo PROC. Por ejemplo, un AR de dos variables (1) para el proceso de los errores de los dos Y1 e Y2 variables endógenas se puede especificar como sigue: problemas de convergencia con los modelos ARMA modelos ARMA puede ser difícil de estimar. Si las estimaciones de los parámetros no están dentro del rango apropiado, un modelo de promedios móviles términos residuales crecen exponencialmente. Los residuales calculados para las observaciones posteriores pueden ser muy grandes o pueden desbordarse. Esto puede ocurrir ya sea porque los valores de arranque no se utilizaron o porque las iteraciones se alejan de los valores razonables. Se debe tener cuidado en la elección de los valores de partida para los parámetros ARMA. A partir de los valores de 0,001 para los parámetros ARMA suelen trabajar si el modelo se ajusta a los datos del pozo y el problema es bien acondicionado. Tenga en cuenta que un modelo MA menudo se puede aproximar por un modelo AR de orden superior, y viceversa. Esto puede resultar en alta colinealidad en modelos ARMA mixtos, que a su vez puede causar graves malos acondicionado en los cálculos y la inestabilidad de las estimaciones de los parámetros. Si usted tiene problemas de convergencia, mientras que la estimación de un modelo con procesos ARMA error, tratar de estimar en los pasos. En primer lugar, utilice una instrucción FIT para estimar sólo los parámetros estructurales con los parámetros ARMA mantenidas a cero (o en las estimaciones previas razonables si está disponible). A continuación, utilice otra declaración FIT para estimar los parámetros ARMA solamente, utilizando los valores de los parámetros estructurales de la primera carrera. Como los valores de los parámetros estructurales son propensos a estar cerca de sus estimaciones finales, las estimaciones de los parámetros ARMA pueden ahora convergen. Por último, utilice otra declaración FIT para producir estimaciones simultáneas de todos los parámetros. Dado que los valores iniciales de los parámetros son ahora probablemente muy cerca de sus estimaciones conjuntas finales, las estimaciones deberían converger rápidamente si el modelo es adecuado para los datos. Condiciones iniciales AR Los GAL iniciales de los términos de error de AR (p) modelos se pueden modelar de diferentes maneras. Los métodos de inicio de error autorregresivos apoyados por procedimientos / ETS SAS son los siguientes: condicionales mínimos cuadrados (ARIMA y procedimientos modelo) por mínimos cuadrados incondicionales (AutoReg, Arima, y ​​procedimientos modelo) de máxima verosimilitud (AutoReg, Arima, y ​​procedimientos modelo) Yule-Walker (procedimiento AutoReg solamente) Hildreth-Lu, que borra las primeras observaciones de p (procedimiento modelo) Véase el capítulo 8, el procedimiento AutoReg, para una explicación y discusión de los méritos de varios AR (p) métodos de inicio. Las inicializaciones CLS, ULS, ML, y HL pueden ser realizadas por MODELO Proc. Para (1) errores de AR, estas inicializaciones se pueden producir como se muestra en la Tabla 18.2. Estos métodos son equivalentes en muestras grandes. Tabla 18.2 Inicializaciones realizadas por MODELO PROC: AR (1) Los errores de los GAL iniciales de los términos de error de MA (q) modelos también se pueden modelar de diferentes maneras. El siguiente error de media móvil paradigmas de puesta en marcha son compatibles con el modelo ARIMA y procedimientos: incondicionales de mínimos cuadrados mínimos cuadrados condicionales El condicional método de mínimos cuadrados para estimar los términos de error de movimiento de la media no es óptima porque ignora el problema de puesta en marcha. Esto reduce la eficiencia de las estimaciones, a pesar de que siguen siendo imparcial. Los residuos retardados iniciales, que se extiende antes del inicio de los datos, se supone que son 0, su valor esperado incondicional. Esto introduce una diferencia entre estos residuales y los residuos cuadrados generalizados menos para la covarianza de media móvil, el cual, a diferencia del modelo autorregresivo, persiste a través del conjunto de datos. Por lo general, esta diferencia converge rápidamente a 0, pero para los procesos de movimiento de la media casi no invertible la convergencia es bastante lento. Para minimizar este problema, usted debe tener un montón de datos, y las estimaciones de los parámetros de movimiento de la media debe estar dentro del rango invertible. Este problema se puede corregir a expensas de escribir un programa más complejo. Incondicionales estimaciones de mínimos cuadrados para el (1) proceso de MA se pueden producir mediante la especificación del modelo de la siguiente manera: errores de media móvil pueden ser difíciles de estimar. Usted debe considerar el uso de un AR (p) aproximación al proceso de media móvil. Un proceso de media móvil por lo general puede ser bien aproximada por un proceso autorregresivo si los datos no han sido suavizadas o diferenciada. La macro La macro AR AR SAS genera instrucciones de programación para el modelo de proceso para los modelos autorregresivos. La macro AR es parte del software SAS / ETS, y no hay opciones especiales necesita ser configurado para utilizar la macro. El proceso autorregresivo se puede aplicar a los errores de ecuaciones estructurales o a los propios serie endógeno. La macro AR se puede utilizar para los siguientes tipos de autorregresión: vector autorregresivo sin restricciones restringido de vectores autorregresivos univariante Autorregresión Para modelar el término de error de una ecuación como un proceso autorregresivo, utilice la siguiente instrucción después de la ecuación: Por ejemplo, supongamos que Y es un función lineal de X1, X2, y una (2) error AR. Se podría escribir este modelo de la siguiente manera: Las llamadas a AR deben venir después de todas las ecuaciones que el proceso se aplica a. La invocación de la macro anterior, AR (y, 2), produce las declaraciones que aparecen en la salida de lista en la figura 18.58. Figura 18.58 Opción lista de salida para un AR (2) Modelo PRED El prefijo variables son variables de los programas temporales utilizados de manera que los retardos de los residuos son los residuos correctas y no los redefinido por esta ecuación. Tenga en cuenta que esto es equivalente a las declaraciones escritas de forma explícita en la sección Forma General de modelos ARMA. También puede restringir los parámetros autorregresivos a cero en los retardos seleccionados. Por ejemplo, si usted quiere parámetros autorregresivos en los retardos 1, 12 y 13, se pueden utilizar las siguientes declaraciones: Estas declaraciones generan el resultado que se muestra en la Figura 18.59. Figura 18.59 Opción lista de salida para un modelo AR con retardos en el 1, 12, 13 y el modelo de elaboración de las listas de Compilado instrucción de código de programa como Analizada PRED. yab x1 x2 c RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y OLDPRED. y PRED. y YL1 ZLAG1 (y - PREDY) yl12 ZLAG12 (y - PREDY) yl13 ZLAG13 (y - PREDY) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y hay variaciones en el método de mínimos cuadrados condicional, dependiendo de si las observaciones en el inicio de la serie se utilizan para calentar el proceso de AR. Por defecto, el método de los mínimos cuadrados condicional AR utiliza todas las observaciones y asume ceros para los desfases iniciales de los términos autorregresivos. Mediante el uso de la opción M, puede solicitar que la AR utilizar los mínimos cuadrados incondicionales (ULS) o el método de máxima verosimilitud (ML) en su lugar. Por ejemplo, las discusiones de estos métodos se proporcionan en las condiciones iniciales, la sección AR. Mediante el uso de la opción n MCLS, puede solicitar que las primeras observaciones n usarse para calcular las estimaciones de los retardos autorregresivos iniciales. En este caso, el análisis comienza con la observación n 1. Por ejemplo: Puede utilizar la macro AR aplicar un modelo autorregresivo de la variable endógena, en lugar de con el término de error, utilizando la opción TYPEV. Por ejemplo, si desea agregar los últimos cinco retardos de Y de la ecuación en el ejemplo anterior, se puede usar AR para generar los parámetros y LAG mediante el uso de las siguientes afirmaciones: Las declaraciones anteriores generan el resultado que se muestra en la Figura 18.60. Figura 18.60 Opción lista de salida para un modelo AR de Y Y Este modelo predice como una combinación lineal de X1, X2, una intercepción, y los valores de Y en los últimos cinco períodos. Sin restricciones de vectores autorregresivos para modelar los términos de error de un conjunto de ecuaciones como un proceso autorregresivo vectorial se utilizará el siguiente formulario de la macro AR después de las ecuaciones: El valor ProcessName es cualquier nombre que se proporciona para la AR para usar en la fabricación de nombres para el autorregresivo parámetros. Puede utilizar la macro AR para modelar varios procesos AR diferentes para diferentes conjuntos de ecuaciones mediante el uso de diferentes nombres de proceso para cada conjunto. El nombre del proceso asegura que los nombres de las variables utilizadas son únicos. Utilice un valor ProcessName corto para el proceso si son estimaciones de los parámetros que se escriben en un conjunto de datos de salida. La macro AR intenta construir nombres de los parámetros inferiores o iguales a ocho caracteres, pero esto está limitado por la longitud del nombre de proceso. que se usa como un prefijo para los nombres de los parámetros AR. El valor variablelist es la lista de las variables endógenas de las ecuaciones. Por ejemplo, supongamos que los errores para ecuaciones Y1, Y2, Y3 y son generados por un proceso de vector autorregresivo de segundo orden. Puede utilizar las siguientes afirmaciones: que generan los siguientes para Y1 e Y2 código similar para e Y3: Sólo los mínimos cuadrados condicionales método (MCL o MCLS n) se pueden utilizar para los procesos de vectores. También puede utilizar el mismo formulario con las restricciones que la matriz de coeficientes sea 0 en los retardos seleccionados. Por ejemplo, las siguientes afirmaciones se aplican un proceso vector de tercer orden a los errores ecuación con todos los coeficientes en el retardo 2 restringido a 0 y con los coeficientes en los retardos 1 y 3 sin restricciones: puede modelar el Y1Y3 tres series como un proceso autorregresivo de vector en las variables en lugar de en los errores mediante el uso de la opción TYPEV. Si se desea modelar Y1Y3 como una función de los valores pasados ​​de Y1Y3 y algunas variables exógenas o constantes, se puede usar AR para generar las declaraciones de los términos de retraso. Escribe una ecuación para cada variable para la parte nonautoregressive del modelo, y luego llamar AR con la opción TYPEV. Por ejemplo, la parte nonautoregressive del modelo puede ser una función de variables exógenas, o puede ser parámetros de intercepción. Si no hay componentes exógenos al modelo de vectores autorregresivos, incluyendo no intercepta, a continuación, asignar cero a cada una de las variables. Debe haber una asignación a cada una de las variables antes de AR se llama. Este ejemplo modelos del vector Y (A1 A2 A3) como una función lineal única de su valor en los dos períodos anteriores y un vector de error de ruido blanco. El modelo tiene 18 3 3 3 (3) parámetros. Sintaxis de la macro AR Hay dos casos de la sintaxis de la macro AR. Cuando no se necesitan restricciones en un proceso AR vector, la sintaxis de la macro AR tiene la forma general especifica un prefijo para AR para usar en la construcción de nombres de variables necesarias para definir el proceso AR. Si no se especifica el endolist, la lista de valores por defecto endógenos para nombrar. que debe ser el nombre de la ecuación a la que el proceso de error AR se va a aplicar. El valor de nombre no puede superar los 32 caracteres. es el orden del proceso AR. especifica la lista de ecuaciones para que el proceso de AR se va a aplicar. Si se administra más de un nombre, un proceso de vectores sin restricciones se crea con los residuos estructurales de todas las ecuaciones incluidas como regresores en cada una de las ecuaciones. Si no se especifica, por defecto endolist nombrar. especifica la lista de retardos en la que los términos AR se van a añadir. Los coeficientes de los términos en que aparece desfases no se ponen a 0. Todos los desfases mencionados debe ser menor o igual a nlag. y no debe haber duplicados. Si no se especifica, los valores por defecto a todos los GAL laglist 1 a nlag. especifica el método de estimación de implementar. Los valores válidos de M son condicionales (CLS estimaciones de mínimos cuadrados), ULS (incondicional estimaciones de mínimos cuadrados), y ML (estimaciones de máxima verosimilitud). MCLS es el valor predeterminado. Sólo MCLS está permitido cuando se especifica más de una ecuación. Los métodos de la ULS y ML no son compatibles con los modelos de vectores AR AR. especifica que el proceso AR se va a aplicar a las propias variables endógenas en lugar de los residuos estructurales de las ecuaciones. Restringido de vectores autorregresivos Usted puede controlar qué parámetros están incluidos en el proceso, lo que restringe a 0 aquellos parámetros que no se incluye. En primer lugar, utilice la opción AR con DEFER para declarar la lista de variables y definir la dimensión del proceso. A continuación, utilice AR adicional llama a generar condiciones para las funciones seleccionadas con variables seleccionadas en los retardos seleccionados. Por ejemplo, las ecuaciones de error producidos son las siguientes: Este modelo establece que los errores de Y1 dependen de los errores tanto de Y1 y Y2 (pero no Y3) en ambos retardos 1 y 2, y que los errores de Y2 y Y3 dependen los errores anteriores para las tres variables, pero sólo en el retardo 1. AR Macro sintaxis para restringido vector AR un uso alternativo de la AR se permite imponer restricciones a un proceso AR vector llamando AR varias veces para especificar diferentes términos AR y retardos para diferentes ecuaciones. La primera llamada tiene la forma general especifica un prefijo para AR para usar en la construcción de nombres de variables necesarias para definir el proceso AR vectorial. especifica el orden del proceso AR. especifica la lista de ecuaciones para que el proceso de AR se va a aplicar. especifica que la AR no es generar el proceso de AR pero es esperar a que la información adicional especificada en adelante AR exige el mismo valor de nombre. Las llamadas posteriores tienen la forma general es la misma que en la primera llamada. especifica la lista de ecuaciones para los que las especificaciones en esta llamada AR se van a aplicar. Sólo los nombres especificados en el valor endolist de la primera convocatoria para el valor de nombre puede aparecer en la lista de ecuaciones en eqlist. especifica la lista de ecuaciones cuyos quedado estructural residuales son incluidos entre los regresores en las ecuaciones en eqlist. Sólo los nombres de la endolist de la primera convocatoria para el valor del nombre pueden aparecer en lista de variables. Si no se especifica, por defecto varlist a endolist. especifica la lista de retardos en la que los términos AR se van a añadir. Los coeficientes de los términos en los retardos no enumerados se pone a 0. Todos los desfases mencionados deben ser menor o igual al valor de nlag. y no debe haber duplicados. Si no se especifica, por defecto laglist a todos los GAL 1 a nlag. La macro La macro MA MA SAS genera instrucciones de programación para el modelo de proceso para los modelos de media móvil. La macro MA es parte del software SAS / ETS, y no se necesitan opciones especiales para utilizar la macro. El proceso de error de media móvil se puede aplicar a los errores de ecuaciones estructurales. La sintaxis de la macro MA es la misma que la macro AR excepto que no hay argumento de tipo. Cuando se utiliza el MA y macros AR combinada, la macro MA debe seguir la macro AR. Las siguientes declaraciones SAS / IML producen un ARMA (1, (1 de 3)) proceso de error y guardarlo en el MADAT2 conjunto de datos. Las siguientes declaraciones PROC modelo son utilizados para estimar los parámetros de este modelo mediante el uso de la estructura de error de máxima verosimilitud: las estimaciones de los parámetros producidos por esta ejecución se muestran en la Figura 18.61. Figura 18.61 Las estimaciones de un ARMA (1, (1 de 3)) Proceso Hay dos casos de la sintaxis de la macro MA. Cuando no se necesitan restricciones en un proceso MA vector, la sintaxis de la macro MA tiene la forma general especifica un prefijo para MA utilizar en la construcción de los nombres de las variables necesarias para definir el proceso de MA y es el endolist predeterminado. es el orden del proceso de MA. especifica las ecuaciones a las que el proceso de MA se va a aplicar. Si se administra más de un nombre, la estimación CLS se utiliza para el proceso de vectores. especifica los retardos en la que los términos MA se van a añadir. Todos los retardos mencionados debe ser menor que o igual a nlag. y no debe haber duplicados. Si no se especifica, los valores por defecto a todos los GAL laglist 1 a nlag. especifica el método de estimación de implementar. Los valores válidos de M son condicionales (CLS estimaciones de mínimos cuadrados), ULS (incondicional estimaciones de mínimos cuadrados), y ML (estimaciones de máxima verosimilitud). MCLS es el valor predeterminado. Sólo MCLS está permitido cuando se especifica más de una ecuación en el endolist. MA Sintaxis Macro para Restringido vector de media móvil Un uso alternativo de MA se le permite imponer restricciones a un proceso MA vector llamando MA varias veces para especificar diferentes términos MA, estando muy por diferentes ecuaciones. La primera llamada tiene la forma general especifica un prefijo para MA utilizar en la construcción de nombres de variables necesarias para definir el proceso MA vectorial. especifica el orden del proceso MA. especifica la lista de ecuaciones para que el proceso de MA se va a aplicar. MA especifica que no es generar el proceso de MA, pero es esperar a que la información adicional especificada en la tarde MA exige el mismo valor de nombre. Las llamadas posteriores tienen la forma general es la misma que en la primera llamada. especifica la lista de ecuaciones para los que las especificaciones en la presente convocatoria MA se van a aplicar. especifica la lista de ecuaciones cuyos quedado estructural residuales son incluidos entre los regresores en las ecuaciones en eqlist. especifica la lista de retardos en la que los términos MA están siendo added.2.1 Moving Modelos Promedio (modelos MA) modelos de series temporales conocidos como modelos ARIMA puede incluir términos autorregresivos y / o términos de medias móviles. En la Semana 1, aprendimos un término autorregresivo en un modelo de series de tiempo para la variable x t es un valor rezagado de x t. Por ejemplo, un retraso de 1 x término autorregresivo es t-1 (multiplicado por un coeficiente). Esta lección define términos de medias móviles. Un término promedio móvil en un modelo de series de tiempo es un error pasado (multiplicado por un coeficiente). Sea (en peso desbordado N (0, sigma2w)), lo que significa que el w t son de forma idéntica, distribuido de forma independiente, cada uno con una distribución normal con media 0 y la misma varianza. El 1º orden moviendo modelo de media, denotado por MA (1) es (xt theta1w mu peso) El orden 2º movimiento modelo de media, denotado por MA (2) es (mu xt peso theta1w theta2w) El q º orden moviendo modelo de media , denotado por MA (q) es (mu xt wt theta1w theta2w puntos thetaqw) Nota. Muchos libros de texto y programas de software definen el modelo con signos negativos antes de los términos. Esto no cambia las propiedades teóricas generales del modelo, aunque no voltear los signos algebraicos de valores de los coeficientes estimados y los términos (unsquared) en las fórmulas para FCA y varianzas. Es necesario comprobar su software para verificar si los signos negativos o positivos se han utilizado con el fin de escribir correctamente el modelo estimado. R utiliza señales positivas en su modelo subyacente, como lo hacemos aquí. Propiedades teóricas de una serie de tiempo con un MA (1) Nota Modelo que el único valor distinto de cero en el ACF teórico es de retardo 1. Todos los demás autocorrelaciones son 0. Así, un ACF muestra con una autocorrelación significativa sólo en el retardo 1 es un indicador de un posible MA (1) modelo. Para los estudiantes interesados, pruebas de estas propiedades son un apéndice de este folleto. Ejemplo 1 Supongamos que un MA (1) modelo es x t 10 w w t 0,7 t-1. donde (en peso desbordado N (0,1)). Por lo tanto el coeficiente 1 0.7. El ACF teórico está dado por una trama de esta sigue ACF. La trama se acaba de mostrar es la ACF teórico para un MA (1) con 1 0.7. En la práctica, una muestra de costumbre suelen proporcionar un patrón tan claro. El uso de R, simulamos n 100 valores de las muestras utilizando el modelo x 10 w t t t 0,7 W-1 donde w t iid N (0,1). Para esta simulación, un gráfico de series temporales de datos de la muestra de la siguiente manera. No podemos decir mucho de esta trama. El ACF de la muestra para la simulación de datos sigue. Vemos un aumento en el retardo 1 seguido por valores generalmente no significativos para retardos pasado 1. Tenga en cuenta que la muestra ACF no coincide con el patrón teórico de la MA subyacente (1), que es que todas las autocorrelaciones para los retrasos del pasado 1 estarán 0 . una muestra tendría un ACF muestra ligeramente diferente se muestra a continuación, pero probablemente tendría las mismas características generales. Theroretical Propiedades de una serie temporal con un modelo MA (2) Para el (2) Modelo MA, propiedades teóricas son las siguientes: Tenga en cuenta que los únicos valores no nulos en la ACF teórica son los GAL 1 y 2. Autocorrelaciones para retardos más altos son 0 . por lo tanto, una muestra con ACF autocorrelaciones significativas en los retardos 1 y 2, pero autocorrelaciones no significativos para retardos más alto indica una posible MA (2) del modelo. iid N (0,1). Los coeficientes son 1 0,5 y 2 0.3. Debido a que este es un MA (2), el ACF teórica tendrá valores distintos de cero solamente en los retardos 1 y 2. Los valores de los dos autocorrelaciones son distintos de cero Una trama de la ACF teórico sigue. Como casi siempre es el caso, datos de la muestra suele comportarse tan perfectamente como teoría. Hemos simulado n 150 valores de la muestra para el modelo x 10 w t t t-0,5 W 0,3 W 1 T-2. donde w t iid N (0,1). El gráfico de series temporales de datos de la siguiente manera. Al igual que con el gráfico de series temporales de los (1) datos de las muestras MA, usted no puede decir mucho de ella. El ACF de la muestra para la simulación de datos sigue. El patrón es típico para situaciones en las que una (2) modelo de MA puede ser útil. Hay dos picos estadísticamente significativas en los retardos 1 y 2, seguido por los valores no significativos para otros retardos. Tenga en cuenta que debido a un error de muestreo, el ACF muestra no coincide con el patrón teórico exactamente. ACF para el general MA (q) Modelos Una característica de los modelos MA (q), en general, es que hay autocorrelaciones distintos de cero para los primeros retardos q autocorrelaciones y 0 para todos los GAL gt q. No unicidad de la conexión entre los valores de 1 y (Rho1) en MA (1) Modelo. En el MA (1) modelo, para cualquier valor de 1. el recíproco 1/1 da el mismo valor para A modo de ejemplo, utilizar 0,5 por 1. y luego usar 1 / (0,5) 2 por 1. Usted conseguirá (Rho1) 0,4 en ambos casos. Para satisfacer una restricción teórica llamada invertibilidad. que restringir MA (1) modelos de tener valores con valor absoluto menor que 1. En el ejemplo dado, 1 0,5 habrá un valor de parámetro permisible, mientras que 1 1 / 0.5 2 no lo hará. Invertibilidad de modelos Un modelo MA MA se dice que es invertible si es algebraicamente equivalente a un modelo AR orden infinito convergentes. Al converger, nos referimos a que los coeficientes AR disminuyen a 0 a medida que avanzamos en el tiempo. Invertibilidad es una restricción de software programado en series de tiempo utilizado para estimar los coeficientes de los modelos con los términos MA. No es algo que comprobamos en el análisis de datos. Información adicional acerca de la restricción invertibilidad de MA (1) modelos se da en el apéndice. Teoría avanzada Nota. Para un modelo MA (q) con un ACF especificado, sólo hay un modelo invertible. La condición necesaria para invertibilidad es que los coeficientes tienen valores tales que la ecuación 1- 1 y-. - Q y q 0 tiene soluciones para y que están fuera del círculo unitario. R Código de los ejemplos en el Ejemplo 1, que representa el ACF teórica del modelo x 10 w t t. 7w t-1. y luego simulado n 150 valores de este modelo y se representó la serie temporal de la muestra y la ACF muestra para los datos simulados. Los comandos R utilizan para trazar el ACF teórico fueron: acfma1ARMAacf (mac (0,7), lag. max10) 10 rezagos de ACF para MA (1) con 0,7 theta1 lags0: 10 crea una variable llamada desfases que va de 0 a 10. parcela (retardos, acfma1, xlimc (1,10), ylabr, Type H, principal ACF para MA (1) con theta1 0,7) abline (H0) agrega un eje horizontal de la gráfica el primer comando determina la ACF y lo almacena en un objeto acfma1 llamado (nuestra elección del nombre). El comando plot (los comandos 3º) parcelas se retrasa en comparación con los valores de ACF para desfases del 1 al 10. Cuando las etiquetas El parámetro ylab el eje Y y el parámetro principal pone un título en la parcela. Para ver los valores numéricos de la ACF sólo tiene que utilizar el comando acfma1. La simulación y las parcelas se realizaron con los siguientes comandos. xcarima. sim (n150, lista (mac (0,7))) Simula n 150 valores de MA (1) xxc10 añade 10 para hacer medias por defecto 10. Simulación en el sentido de 0. plot (x, TypeB, mainSimulated MA (1) datos) ACF (x, xlimc (1,10), mainACF para datos de muestras simuladas) En el Ejemplo 2, se representa gráficamente la ACF teórica del modelo XT 10 en peso de 0,5 w t-1 0,3 w T-2. y luego simulado n 150 valores de este modelo y se representó la serie temporal de la muestra y la ACF muestra para los datos simulados. Los comandos R utilizados fueron acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 parcela (GAL, acfma2, xlimc (1,10), ylabr, Type H, principal ACF para MA (2) con theta1 0,5, theta20.3) abline (H0) xcarima. sim (n150, lista (mac (0,5, 0,3))) xxc10 plot (x, TypeB, principal simulada MA (2) Serie) ACF (x, xlimc (1,10), mainACF para MA simulada (2) datos) Apéndice: Prueba de propiedades de MA (1) para los estudiantes interesados, aquí están las pruebas de las propiedades teóricas de la (1) modelo MA. Diferencia: (texto (xt) w texto (mu theta1 en peso) 0 texto (en peso) de texto (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Cuando h 1, la expresión anterior 1 w 2. Para cualquier h 2, la expresión anterior 0 . la razón es que, por definición de independencia del peso. E (k w w j) 0 para cualquier k j. Además, como la w t tiene media 0, E (w w j j) E (w j 2) w 2. Por una serie de tiempo, aplicar este resultado para obtener el ACF dado anteriormente. Un modelo MA invertible es uno que puede ser escrito como un modelo AR orden infinito que converge de manera que los coeficientes AR convergen a 0 a medida que avanzamos infinitamente en el tiempo. Bien demostrar invertibilidad para el (1) modelo de MA. Tenemos entonces sustituto de la relación (2) A la hora de w t-1 en la ecuación (1) (3) (ZT en peso theta1 (z - theta1w) en peso theta1z - theta2w) t-2. la ecuación (2) se convierte en A continuación, sustituir relación (4) para W t-2 en la ecuación (3) (ZT en peso theta1 z - theta21w peso theta1z - theta21 (z - theta1w) en peso theta1z - theta12z theta31w) Si tuviéramos que continuar ( infinitamente), obtendríamos el modelo AR orden infinito (ZT en peso theta1 z - theta21z theta31z - theta41z puntos) Obsérvese, sin embargo, que si 1 1, los coeficientes multiplicadores de los retardos z aumentará (infinitamente) de tamaño a medida que avanzamos en la espalda hora. Para evitar esto, necesitamos 1 LT1. Esta es la condición para un MA (1) modelo invertible. Modelo de la orden infinito MA En la semana 3, así que ver un AR (1) modelo puede ser convertido en un modelo de orden infinito MA: (xt - mu peso phi1w phi21w puntos phik1 w puntos resumen phij1w) Esta suma de términos de ruido blanco es conocido últimos como la representación causal de un AR (1). En otras palabras, x t es un tipo especial de MA con un número infinito de términos que se remontan en el tiempo. Esto se llama una orden infinito MA o MA (). Una orden MA finito es un AR orden infinito y cualquier orden de AR finito es un MA orden infinito. Recordemos en la semana 1, se observó que la exigencia de un AR estacionario (1) es que 1 LT1. Permite calcular el Var (x t) utilizando la representación causal. Este último paso se utiliza un hecho básico acerca serie geométrica que requiere (phi1lt1) diverge de lo contrario las series. NavigationOn mínimos cuadrados estimación de la varianza residual en el primer orden modelo de media móvil Resumen En el primer orden modelo de media móvil se analiza el comportamiento del estimador de la varianza del residuo aleatoria procedente del método de los mínimos cuadrados. Este procedimiento se incorpora en algunos programas de ordenador utilizados. Mostramos a través de simulaciones que las fórmulas asintóticas para el sesgo y la varianza del estimador de máxima verosimilitud, se pueden utilizar como aproximaciones para el estimador de mínimos cuadrados, al menos cuando el parámetro de modelo está lejos de la región de la no-invertibilidad. resultados asintóticos se desarrollan utilizando la idea ldquolong autoregressionrdquo, y esto conduce a una expresión de forma cerrada para el estimador de mínimos cuadrados. A su vez esto se compara con el estimador de máxima verosimilitud bajo normalidad, tanto en su exacta y en una versión aproximada, que se obtiene mediante la aproximación de la matriz en el exponente de la función de probabilidad gaussiana. Esta comparación se ilustra mediante algunos ejemplos numéricos. La dependencia de los resultados sobre los sesgos en los valores del parámetro de modelo se enfatiza. Palabras clave Moving modelo de estimación de la varianza residual media de mínimos cuadrados sesgo asintótico asintótica de error cuadrado medio dirección de correspondencia. Facultad de Ciencias Economicas, Inst. Estadisticas de Investigaciones, Universidad Nacional de Tucumán, Casilla de Correo 209, 4000 Tucumán, Argentina. copia Copyright 1999 Elsevier Science BV Todos los derechos reservados.

No comments:

Post a Comment